Journal of Huorine Chemistry, 26 (1984) 507-S 14 507

Received: April 16, 1984; accepted: June 29, 1984

SYNTHESIS AND CHARACTERIZATION OF NEW HYDRAZINIUM(I+) FLUOROSTANNATES(II)

D. GANTAR, A. RAHTEN

Jožef Stefan Institute, E. Kardelj University, 61000 Ljubljana (Yugoslavia)

B. VOLAVSEK

Visoka tehniška šola, The University, 62000 Maribor (Yugoslavia)

SUMMARY

Two new compounds, $N_2H_5SnF_3$ and $N_2H_5SnF_5$, were obtained when the system $N_2H_5F-SnF_2-H_2O$ was investigated. The solids were characterized by chemical analysis, vibrational spectra and X-ray powder diffraction patterns. Thermal decomposition studies of the compounds showed that they decompose through intermediates, the corresponding arrmonium fluorostannates(II), to tin(I1) fluoride.

INTRODUCTION

The Lewis acid ability of tin(II) fluoride to form different types of complexes with suitable Lewis bases is well established.

Products containing the trifluorostannate ion, SnF_{3}^{-} , have been prepared by reactions of tin(I1) fluoride with alkali metal fluorides, ammonium fluoride or non-transition metal(I1) nitrates in aqueous hydrofluoric solution $[1-5]$. The existence of the SnF₃⁻ group was proved by vibrational analysis and X-ray diffraction studies.

When a 2:1 molar ratio of tin(II) fluoride to alkali fluoride was used, solids with composition MSn_2F_F (M = Na, K, Rb, Cs, NH₁₁) were isolated and characterized $[2, 6-8]$. The formation of a polynuclear $Sn_2F_5^-$ ion was confirmed by various physicochemical studies.

Following our previous research on hydrazinium(1+) fluorometallates in aqueous solution $[9]$, it seemed likely that new hydrazinium(1+) fluorostannates(I1) could be prepared by reaction between hydrazinium(l+) fluoride and tin(I1) fluoride.

0022-1139/84/\$3.00 OElsevier Sequoia/Printed in The Netherlands

RESULTS AND DISCUSSION

Colourless crystals of $N_{2}H_{5}SnF_{3}$ were obtained when tin(II) fluoride was dissolved in an aqueous solution of the stoichiometric amount of hydrazinium(1+) fluoride. When a 1:2 ratio of $N_2H_EF:snF_2$ was used, $N_2H_ESn_2F_E$ was prepared.

The SnF_3 ion is pyramidal due to the presence of a sterically active non-bonding pair of electrons which makes it an excellent ligand. The Sn_2F_5 ions are formed in concentrated tin(I1) solutions containing insufficient fluoride ions to complete the formation of SnF_{3}^{-} . In the crystal structure of NaSn₂F₅ [10] it was confirmed that two SnF₂ groups are linked by a bridging fluorine.

The vibrational spectra of $N_2H_5SnF_3$ and $N_2H_5Sn_2F_5$ are given, together with the assignments, in Table 1.

The anionic part of the infrared spectrum of $N_2H_5SnF_3$ is close to that of $\texttt{NH}_{\mu}\texttt{SnF}_{3}$ which was analysed on the basis of the C $_{3\texttt{v}}$ symmetry of the SnF_{2}^- anion [11]. The Raman spectrum shows additional bands beside the bands which clearly originate from SnF₃. The frequencies v_2 and V_{μ} , which were previously calculated by Donaldson and coworkers $\begin{bmatrix} 11 \end{bmatrix}$ for SnX₂ complexes, are in fact observed experimentally in the Raman spectrum of $N_2H_5SnF_3$. The splitting of V_3 and V_4 is probably caused either by site symmetry effects or by distortion of the SnF₃ groups. Due to unassigned additional bands, which should be understood only as a consequence of the interaction between the anionic units, we ascribe this splitting mainly to the distortion of the anions.

In the cationic part of the vibrational spectra of $N_\mathrm{o}H_\mathrm{c}SnF_\mathrm{o}$ and $N_2H_ESn_2F_E$ all bands in the region from 950 to 1667 cm^{-1} are assigned to the N_2H_5 ⁺ group [12].

The $Sn_2F_5^-$ ion has C_2 point symmetry and therefore fifteen vibrations of the molecule are expected, all infrared and Raman active. Assignment of th vibrational spectrum of $N_2H_5Sn_2F_5$ is consistent with normal coordinative analysis of the $Sn_{2}F_{5}$ complexes [13]. The symmetric stretching vibration in $Sn_2F_5^-$ is higher in $N_2H_5Sn_2F_5$ than in $NH_4Sn_2F_5$. This can be attributed to one Sn-F bond which is stronger than the others in the Sn₂F₅ complexes which were investigated by Donaldson et al. $[13]$. Distortion of the structure caused by the cation can be explained by the size of $N_2H_5^{\dagger}$ in comparison to NH_{11} ⁺.

TABLE **1**

Assignment	$N_2H_5SnF_3$		$N_2H_5Sn_2F_5$		Assignment	
	R	ΙR	\mathbb{R}	IR		
	108(1.5) 146 (2.8)		130 (2.7)			
v_{4} (SnF ₃ ⁻)	[154 (5.6) L162 (2.5)				$(Sn-F_t)_b$	
$V_2(SnF_3^-)$	196(2.8) 228 (1.7)		193(2.7) 230(2.2)			
	254(2.0)		253(1.2)		$(Sn-F_b)$ _s	
	352(4.3)		338(3.4) 375 (3.4)	319 m 342 m 375 m	$(Sn-F_t)$	
$V_3(SnF_3^-)$	$\begin{bmatrix} 408 & (5.1) \\ 425 & (4.4) \end{bmatrix}$	415s	399 (5.6) 429 (10) 450 (7.5)	415 m		
$V_1(SnF_3^-)$	464 (8.2)	475s		472 s	$(Sn-F_h)$ _S	
$(\nu_{3} + \nu_{4})$ (SnF ₃ ⁻)		547 s	581(0.7)	545s	$(Sn-F_t)$ _s	
	958 (10)	950 vs	1019(5.9)	945 s 970s 1004 s	$(N-N)$ _S	
	1118(2.5)	1085 vs 1107 vs	1145 (2.2) 1159(1.6)	1082 vs 1115 vs	$(NH_3^{\dagger})_b$	
	1508 (2.5)	1230 w 1505 s	1518(1.1)	1260 w 1505 m	$(NH_2)_b$	
	1650 (3.8)	1606 s 1645 s	1555 (1.7) 1667 (1.3)	1580 m	(MH_3^+) (MH_2) _d	

Vibrational spectra cm^{-1} of N₂H₅SnF₃ and N₂H₅Sn₂F₅

The X-ray powder diffraction data for N_2H_5 Sn F_3 and N_2H_5 Sn $_2F_5$ are given in Tables 2 and 3.

The X-ray powder photographs of $\rm N_2H_S$ SnF₃ and $\rm N_2H_S$ Sn $_2$ F₅ were indexed on the basis of an orthorhombic cell; $\rm N_2H_S\rm snF_3$, a = 15.05(1), b = 6.95(0), c = 4.36(0) \hat{R} ; N₂H₅Sn₂F₅, a = 10.56(0), b = 4.53(0), c = 7.16(0) \hat{R} .

 N_2H_5 SnF₃ was indexed by comparison with isomorphous N_2H_5 CdF₃ and $N_2H_5M_3$ (M = Mg, Co, Cu, Zn) complexes $[14, 15]$. The cell parameters of this complex are also very close to those of monoclinic CsSnF $_3:$ a = 14.283, b = 6.530, c = 4.855 A, (j = 90.998'(5). The cell parameters of N₂H₅Sn₂F₅ are very close to those of monoclinic RbSn₂F₅: a = 10.124, b = 4.272, c = 7.401 \hat{A} , $\hat{\beta}$ = 90.07^o(8).

h k l	calc.	d. exp.	I	h k l	$d_{calc.}$	d_{exp} .	Ι
1 0 0 1 2 0 Ω 0 1 0 1 $\mathbf{1}$ 0 1 \overline{c} 0 $\mathbf{1}$ $\overline{1}$ 0 2 0 \overline{c} 0 1 \mathbf{c} $\mathbf{1}$ $\overline{1}$ 3 $\mathbf{1}$ $\mathbf{1}$ 5 0 1 1 \overline{c} 1 4 1 1 6 0 0 $\mathbf{1}$ 5 0 6 1 0 1 3 0 3 3 0 2 0 2	6.95 5.11 4.36 4.19 3.77 3.69 3.48 3.39 3.32 2.97 2.76 2.67 2.64 2.51 2.48 2.36 2.29 2.10 2.09	6.94 5.18 4.36 4.14 3.81 3.66 3.51 3.37 3.30 3.01 2.77 2.68 2.61 2.50 2.47 2.36 2.28 2.13 2.09	N S m W m w s m s w W W s W W VW VW VW vw	1 3 0 3 1 $\mathbf{1}$ 3 $\mathbf{1}$ 2 4 0 2 2 0 2 222 4 \overline{c} 2 8 \overline{c} 0 4 4 0 3 3 2 0 1 3 1 1 3 $\mathbf{1}$ 3 3 3 \overline{c} 0	2.05 2.03 1.922 1.886 1.847 1.794 1,658 1.654 1.577 1.514 1.447 1.416 1.369 1.341	2.05 2.02 1.937 1.884 1.850 1.794 1.751 1,660 1.631 1.572 1.514 1.441 1.416 1.365 1.347	w W W W W W W VW VW W VW VW VW VW VW

X-ray powder diffraction data of $N_2H_5SnF_3$

TABLE 3

X-ray powder diffraction data of $N_2H_5Sn_2F_5$

$h \, k \, 1$	$d_{calc.}$	$d_{exp.}$	I.	h k l	$d_{\text{calc.}}$	$d_{exp.}$	Ι
$1 \; 1$ - 0 1 ₁ 1 02 0 0 0 3 0 -2 1 1 ¹ 2 0 ₂ \overline{c} 1 ² 1 12 2 0 ³ 1 \overline{c} 0 1 $\mathbf{1}$ 0 2 $\mathbf{1}$ ्र 1 4 1 2 2^2 1	4.16 3.60 3.58 3.52 3.39 3.10 2.96 2.71 2.48 2.33 2.21 2.16 2.07 1.924 1.883	4.09 3.58 3.52 3.40 3.28 3.03 2.99 2.72 2.46 2.33 2.22 2.16 2.06 1.936 1.892	m S S W VW \mathbf{s} VW W m W VW W w m W	321 222 4 20 4 1 ³ 6. $\mathbf{1}$ $\mathbf{1}$ 4 2 ₂ 23 3 1 3 $\mathbf{1}$ 3 -2 1 5 $\mathbf{1}$ 1 1 5 2	1.840 1.799 1.695 1.649 1.600 1.550 1.489 1.463 1.382 1.354 1.322	1.831 1.796 1.739 1.696 1.649 1,602 1,551 1.520 1.486 1.463 1.380 1.353 1.321	W m VW vw W W VW W W W VW W M

Thermal decomposition studies of the salts $\rm N_2H_5Sr_2$ and $\rm N_2H_5Sr_2F_5$ show that their decomposition occurs in two steps through the intermediate: $\texttt{NH}_{4}\texttt{SnF}_3$ and $\texttt{NH}_{4}\texttt{Sn}_2\texttt{F}_5$. In both cases the final product is tin(II) fluoride.

The thermal decomposition of $N_2H_5SnF_3$ (Fig. 1) begins at $41^{\circ}C$, and up to 206^oC the sample loses 7.2 % of its initial weight, which coincides well with the formation of NH_{14} SnF₃ (calculated weight loss is 7.19 %). The intermediate was isolated and identified by chemical analysis.

Fig. 1. TG, DTG and DTA curves of $N_2H_5SnF_3$

The first step is accompanied by an endothermic DTA peak at 65° C. The second step, which occurs immediately, is accompanied by exothermic DTA peaks at 213° and 234° C and the DTG minima at the same temperatures. Up to 350°C the cumulative weight loss is 24.3 %, which correlates well with the theoretical value for the production of tin(II) fluoride (24.94 %). At 560° C the thermal decomposition of tin(II) fluoride begins.

The decomposition of $\rm N_2H_{\rm c}Sn_2F_{\rm c}$ (Fig. 2) begins at 40°C, and in the temperature range 40' to 2O3'C it loses 4.2 % of its initial weight, which agrees with the expected weight change (4.11 %) for the formation of $NH_{4}Sn_{2}F_{5}$, the intermediate, which was characterized by chemical analysis. The DTA curve exhibits two endothermic peaks at 48° and 74° C and a DTG minimum at 40°C. Further decomposition is exothermic with a DTA peak at 218°C, and the DTG minima at 208° and 222°C. Up to 345°C the sample loses 15.3 % of the starting weight, which is very close to the theoretical value (14.25 %) for the formation of tin(II) fluoride.

Fig. 2. TG, DTG and DTA curves of $N_2H_5Sn_2F_5$

The thermal decomposition of N_2H_5 SnF₃ and N_2H_5 Sn₂F₅ can be described as shown below:

$$
N_2H_5SnF_3 \xrightarrow{-H_2} NH_4SnF_3 \xrightarrow{-206^{\circ}C} NH_4SnF_3 \xrightarrow{-206^{\circ} - 305^{\circ}C} ShF_2
$$

\n
$$
N_2H_5Sn_2F_5 \xrightarrow{-H_2} M_2, -H_2
$$

\n
$$
N_4Sn_2F_5 \xrightarrow{-H_3} NH_4Sn_2F_5 \xrightarrow{-203^{\circ} - 345^{\circ}C} ShF_2
$$

\n
$$
N_4Sn_2F_5 \xrightarrow{-H_3} Mr_4Sn_2F_5 \xrightarrow{-203^{\circ} - 345^{\circ}C} ShF_2
$$

EXPERIMENTAL

Materials

Hydrazinium(1+) fluoride was synthesized by heating anhydrous hydrazine and hydrazinium(2+) fluoride $[16]$. Hydrazinium(2+) fluoride was prepared by neutralization of hydrazinium hydrate with an aqueous solution of hydrogen fluoride [17].

Preparation of the samples

A stoichiometric quantity of tin(I1) fluoride was dissolved in an aqueous solution of hydrazinium(l+) fluoride. After evaporation nearly to dryness, crystalline N_2H_5 SnF₃ was obtained.

 $N_2H_5Sn_2F_5$ was prepared by taking a 2:1 molar ratio of tin(II) fluoride and hydrazinium(l+) fluoride.

Characterization

Hydrazine was determined potentiometrically $\begin{bmatrix} 18 \end{bmatrix}$. Tin was determined by a modified method of indirect complexometric titration $\begin{bmatrix} 19,20 \end{bmatrix}$. Total fluoride ion (F_t) and free fluoride ion (F_f^-) were determined by the direct method, or after distillation, using an ion selective electrode $\begin{bmatrix} 21,22 \end{bmatrix}$.

Chemical analyses are summarized as follows:

$$
N_2H_5SnF_3: Found: N_2H_4, 15.8; Sn, 56.8; F_t, 27.3; Calc.: N_2H_4, 15.84; Sn, 56.86; F_t, 27.30.
$$

\n
$$
N_2H_5Sn_2F_5: Found: N_2H_4, 9.1; Sn, 63.4; F_t, 26.4; F_f^-, 26.2; Calc.: N_2H_4, 8.77; Sn, 64.96; F_t, 25.99.
$$

\n
$$
NH_4SnF_3: Found: NH_4^+, 9.2; Calc.: NH_4^+, 9.31.
$$

\n
$$
NH_4Sn_2F_5: Found: NH_4^+, 5.0; Calc.: NH_4^+, 5.15.
$$

Infrared spectra of the powdered solid pressed between CsBr discs were obtained using a Perkin-Elmer 521 spectrometer. The Raman spectra of the solids in a Pyrex tube were recorded using a Spex 1401 machine. As exciting radiation, the 514.5 nm line of an Ar^+ laser (Coherent Radiation) was used. X-ray powder diffraction data were obtained with a Debye-Scherrer type camera and CuK_{∞} radiation.

A Mettler TA 1 Thermoanalyzer was used for the thermal decomposition studies. In a run 100 mg of sample was used and this was referenced against a 100 mg sample of α -A1₂0₃. The heating rate for the furnace was 4^oC min⁻¹ and the decompositions were carried out in a dried argon atmosphere with a flow rate of 5 1 hr⁻¹. The DTG range was 10 mg min⁻¹ and the DTA range was 100 µV.

ACKNOWLEDGEMENTS

We are indebted to Miss B. Sedej for chemical analysis and Dr. S. Milidev for useful discussions of vibrational spectra. The work was financed through the Research Community of Slovenia.

REFERENCES

- 1 E.L. Muetterties, Inorg. Chem., **1 (1962)** 342. -
- 2 J.D. Donaldson and J.D. Donoghue, J. Chem. Sot., **(1964)** 271.
- **3** L. Goost and G. Bergerhoff, Naturwissenschaften, 54**(1967)** 248.
- 4 J.D. Donaldson and B.J. Senior, J. Chem. Sot **(A),719671** 1821.
- 5 A.L. Lavassani, L. Cot, C. Geneys and C. Avinens, Compt. Rend., Ser. C, 280 (1975) 1211.
- 6 J.C. Müler, G.K. Stookey and C.W. Beck, J. Dent. Res., 46 (1967) 380.
- **7** J.D. Donaldson, J.D. Donoghue and R. Oteng, J. Chem. Sot., Dalton Trans (1965) 3876.
- 8 A.L. Lavassani, G. Jourdan, C. Avinens and L. Cot, Compt. Rend. Ser.C, - 279 (1974) 307.
- 9 J. Slivnik, J. Maček, A. Rahten and B. Sedej, Thermochim. Acta, 39 (1980) 21.
- 10 R.R. McDonald, A.C. Larson and D.T. Cromer, Acta Cryst., 17 (1964) 1104 -
- 11 J.D. Donaldson, J.F. Knifton, J.D. Donoghue and S.D. Ross, Spectrochim. Acta, 22 (1966) 1173.
- 12 P. Glavič and D. Hadži, Spectrochim. Acta, 28 A (1972), 1963.
- 13 J.D. Donaldson, S.D. Ross and B.J. Senior, Spectrochim. Acta, 24A (1968) 1899.
- 14 J. Slivnik, A. Rahten, J. Maček and B. Sedej, Bull. Slov. Chem. Soc., - 26 (1979) 19.
- 15 B. Volavšek, A. Rahten and J. Slivnik, Bull. Slov. Chem. Soc., 28 **(1981) 175.**
- 16 P. Glavič and J. Slivnik, Monatsh. Chem., 98 (1968) 1878.
- 17 M.L. Kronberg and H.J. Harker, J. Chem. Phys., 10 (1942) 309.
- 18 W.M. McBride, R.A. Henry and S. Skolnik, Anal. Chem., 23 (1951) 890.
- 19 J. Krogten, Talanta, 22 (1975) 505. -
- 20 G. Schwarzenbach and H. Flaschka, Complexometric Titrations, Methuen, London, 1969.
- 21 G. Pietzka and P. Ehrlich, Angew. Chem., 65 (1953) 131.
- 22 Y. Koryta, Anal. Chim. Acta, 61 (1972) 329.